Call for Papers
ScaDL 2021: Third IPDPS Workshop on Scalable Deep Learning over Parallel and Distributed Infrastructure
Scope of the Workshop
Recently, Deep Learning (DL) has received tremendous attention in the research community because of the impressive results obtained for a large number of machine learning problems. The success of state-of-the-art deep learning systems relies on training deep neural networks over a massive amount of training data, which typically requires a large-scale distributed computing infrastructure to run. In order to run these jobs in a scalable and efficient manner, on cloud infrastructure or dedicated HPC systems, several interesting research topics have emerged which are specific to DL. The sheer size and complexity of deep learning models when trained over a large amount of data makes them harder to converge in a reasonable amount of time. It demands advancement along multiple research directions such as, model/data parallelism, model/data compression, distributed optimization algorithms for DL convergence, synchronization strategies, efficient communication and specific hardware acceleration.
SCADL seeks to advance the following research directions:
Asynchronous and Communication-Efficient SGD: Stochastic gradient descent is at the core of large-scale machine learning. Parallelizing SGD gradient computation across multiple nodes increases the data processed per iteration, but exposes the SGD to communication and synchronization delays and unpredictable node failures in the system. Thus, there is a critical need to design robust and scalable distributed SGD methods to achieve fast error-convergence in spite of such system variabilities.
High performance computing aspects: Deep learning is highly compute intensive. Algorithms for kernel computations on commonly used accelerators (e.g. GPUs), efficient techniques for communicating gradients and loading data from storage are critical for training performance.
Model and Gradient Compression Techniques: Techniques such as reducing weights and the size of weight tensors help in reducing the compute complexity. Using lower-bit representations allow for more optimal use of memory and communication bandwidth.
This intersection of distributed/parallel computing and deep learning is becoming critical and demands specific attention to address the above topics which some of the broader forums may not be able to provide. The aim of this workshop is to foster collaboration among researchers from distributed/parallel computing and deep learning communities to share the relevant topics as well as results of the current approaches lying at the intersection of these areas.
Areas of Interest
In this workshop, we solicit research papers focused on distributed deep learning aiming to achieve efficiency and scalability for deep learning jobs over distributed and parallel systems. Papers focusing both on algorithms as well as systems are welcome. We invite authors to submit papers on topics including but not limited to:
Deep learning on cloud platforms, HPC systems, and edge devices
Model-parallel and data-parallel techniques
Asynchronous SGD for Training DNNs
Communication-Efficient Training of DNNs
Scalable and distributed graph neural networks Sampling techniques for graph neural networks
Federated deep learning, both horizontal and vertical, and its challenges
Model/data/gradient compression
Learning in Resource constrained environments
Coding Techniques for Straggler Mitigation
Elasticity for deep learning jobs/spot market enablement
Hyper-parameter tuning for deep learning jobs
Hardware Acceleration for Deep Learning
Scalability of deep learning jobs on large clusters
Deep learning on heterogeneous infrastructure
Efficient and Scalable Inference
Data storage/access in shared networks for deep learning
Graph Neural Networks
Workshop Format
Due to the continuing impact of COVID-19, ScaDL 2021 will also adopt relevant IPDPS 2021 policies on virtual participation and presentation. Consequently, the organizers are currently planning a hybrid (in-person and virtual) event.
Submission Link
Please log in to Linklings using this link (create an account if necessary). Once you login, you will find a link to submissions for the ScaDL workshop.
Key Dates
Paper Submission: February 25, 2021
Acceptance Notification: March 22, 2021
Camera-ready papers due: April 5, 2021
Camera ready papers due: March 30, 2021 (Apologies, constraint imposed by the proceedings publisher)
Author Instructions
ScaDL 2021 accepts submissions in three categories:
Regular papers: 8-10 pages
Short papers: 4 pages
Extended abstracts: 1 page
The aforementioned lengths include all technical content, references and appendices.
Papers should be formatted using IEEE conference style, including figures, tables, and references. The IEEE conference style templates for MS Word and LaTeX provided by IEEE eXpress Conference Publishing are available for download. See the latest versions at https://www.ieee.org/conferences/publishing/templates.html
General Chairs
Stacy Patterson, RPI, USA
Parijat Dube, IBM Research AI, USA
Program Committee Chairs
Yogish Sabharwal, IBM Research AI, India
Danilo Ardagna, Politecnico di Milano, Italy
Logistics
Jayaram K. R., IBM Research AI, USA
Publicity Chairs
Federica Filippini, Politecnico di Milano, Italy
Anirban Das, Rensselaer Polytechnic Institute (RPI), USA
Program Committee
Nathalie Baracaldo Angel, IBM Research, USA
Ignacio Blanquer, Universitat Politecnica de Valencia, Spain
Tianyi Chen, Rensselaer Polytechnic Institute (RPI), USA
Minsik Cho, Apple, USA
Kaoutar El Maghraoui, IBM Research AI, USA
Dario Garcia-Gasulla, Barcelona Supercomputing Center, Spain
Alex Gittens, Rensselaer Polytechnic Institute (RPI), USA
Saurabh Gupta, AMD, India
Kangwook Lee, University of Wisconsin-Madison, USA
Xiangru Lian, University of Rochester, USA
Arya Mazumdar, University of Massachusetts, Amherst, USA
Aiichiro Nakano, University of Southern California, USA
Dhabaleswar K. (DK) Panda, Ohio State University, USA
Sayan Ranu, IIT Delhi, India
Eduardo Rocha Rodrigues, IBM Research, Brazil
Chen Wang, IBM Research, USA
Yangyang Xu, Rensselaer Polytechnic Institute (RPI), USA
Steering Committee
Vijay K. Garg, University of Texas at Austin
Vinod Muthusamy, IBM Research AI
Ashish Verma, IBM Research AI